Funkcje: Różnice pomiędzy wersjami
Linia 1: | Linia 1: | ||
W tym rozdziale wprowadzamy pojęcie funkcji. W teorii zbiorów funkcje, są relacjami, które spełniają dodatkowy warunek jednoznaczności. A więc funkcja jako relacja jest zbiorem, którego elementami są pary uporządkowane. | W tym rozdziale wprowadzamy pojęcie funkcji. W teorii zbiorów funkcje, są relacjami, które spełniają dodatkowy warunek jednoznaczności. A więc funkcja jako relacja jest zbiorem, którego elementami są pary uporządkowane. | ||
− | Relację <math>f\subset X \times Y</math> nazywamy funkcją ze zbioru <math>X</math> w zbiór <math>Y</math>, jeśli ma poniższe własności: | + | ''Relację <math>f\subset X \times Y</math> nazywamy funkcją ze zbioru <math>X</math> w zbiór <math>Y</math>, jeśli ma poniższe własności:'' |
<math>1. \ \left( x,y_{1}\right) \in f \wedge \left( x,y_{2}\right) \in f \Longrightarrow y_{1}=y_{2}. \\ | <math>1. \ \left( x,y_{1}\right) \in f \wedge \left( x,y_{2}\right) \in f \Longrightarrow y_{1}=y_{2}. \\ |
Wersja z 02:53, 28 maj 2018
W tym rozdziale wprowadzamy pojęcie funkcji. W teorii zbiorów funkcje, są relacjami, które spełniają dodatkowy warunek jednoznaczności. A więc funkcja jako relacja jest zbiorem, którego elementami są pary uporządkowane.
Relację
nazywamy funkcją ze zbioru w zbiór , jeśli ma poniższe własności:Czyli funkcja to relacja taka, że do każdego elementu ze zbioru można dobrać dokładnie jeden element będący z nim w relacji . Zobacz (uproszczoną) ilustrację obok- na przecięciu z każdym odcinkiem pionowym mamy dokładnie jeden element . Oczywiście rysunek jest uproszczony- wykres może być bardziej skomplikowany.
Dla zainteresowanych mogę dokładniej wyjaśnić definicję. Pierwsza własność mówi dokładnie tyle, że jeśli do jakiegoś elementu
, możemy dobrać elementy i tak, aby obydwa były w relacji z , to muszą one być sobie równe, a więc do każdego elementu zbioru można dobrać co najwyżej jeden element, będący z nim w relacji . Druga własność mówi, że każdy element należy do , a więc do każdego elementu ze zbioru da się dobrać przynajmniej jeden element , będący z nim w relacji . Łącznie te dwa wnioski oznaczają, że do każdego elementu ze zbioru można dobrać dokładnie jeden element , będący z nim w relacji . Często będziemy używać skrótowego zapisu , który będzie oznaczał, że jest funkcją ze zbioru w zbiór Mówimy, że funkcja przekształca zbiór w zbiór . Zbiór wszystkich funkcji ze zbioru w zbiór , oznaczamy jako . Zbiór ten definiujemy jako:
Przykłady :
relacja jest funkcją, ale już relacja funkcją nie jest, bo zerze przyporządkowuje dwie wartości- i .-dowolny zbiór, Relacja jest funkcją, ale nie jest już funkcją relacja jeśli tylko zbiór jest niepusty. Wystarczy bowiem wyciągnąć z niepustego zbioru element pewien , i utworzyć pary , co pokazuje, że elementowi przypisaliśmy dwie wartości, a więc nie jest to funkcja.
Dla funkcji wprowadzimy podstawowe oznaczenia. Rozważmy funkcję
. Zbiór nazywamy dziedziną funkcji , a zbiór nazywamy przeciwdziedziną funkcji . Dla dowolnego , jedyny element , dla którego , to oznaczamy go przez , podobnie fakt notujemy jako Mówimy wtedy, że funkcja przyporządkowuje elementowi element . Elementy nazywamy argumentami funkcji . Zbiór nazywamy zbiorem wartości funkcji , a jego elementy wartościami funkcji .